A modified energy-saving skyhook for active suspension based on a hybrid electromagnetic actuator

Author:

Ding Renkai1ORCID,Wang Ruochen1,Meng Xiangpeng1,Chen Long1

Affiliation:

1. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, China

Abstract

This study proposes a modified energy-saving skyhook consisting of active control, energy regeneration, and switch. The modified skyhook coordinates the contradiction between dynamic performance and energy consumption of electromagnetic active suspension. The control principle is analyzed, the switch condition between active control and energy recovery is provided, and the switch control system is designed for simulation. Results demonstrate that the presented strategy can coordinate the dynamic performance and energy consumption effectively. The realization structure, namely, a hybrid electromagnetic actuator, is then designed to satisfy the control requirements. It integrates a linear motor and a hydraulic damper. The linear motor is used for active control or energy regeneration, while the hydraulic damper is used to guarantee basic dynamic performance. The structural dimension of hybrid electromagnetic actuator is optimized to increase air gap flux density with the volume and weight limitation. A prototype is fabricated, and a bench test is conducted. Results show that the structure can satisfy the control requirements. Some errors within a reasonable range are also observed between the test and the simulation because the simulation model is prepared under ideal conditions.

Funder

Major Projects of Natural Science Research, Jiangsu Province

Key Research and Development Plan

National Natural Science Foundation of China

Key Research and Development Plan, Jiangsu Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3