Affiliation:
1. School of Automotive and Traffic Engineering, Jiangsu University, Jiangsu, China
Abstract
An electromagnetic active suspension equipped with a linear motor can remarkably improve the dynamic performance of a vehicle in terms of ride comfort and handling stability. However, electromagnetic active suspensions consume a considerable amount of external energy. Therefore, an energy-saving control strategy and its corresponding realization structure are designed to reconcile the contradiction between the dynamic performance and energy consumption. The energy conservation feasibility of an electromagnetic active suspension system is investigated in this study. Subsequently, the conventional skyhook control strategy is used as a reference; a passive damping is introduced to improve the defects of the system for an active control. It can also ensure the basic dynamic performance during energy regeneration. The energy-saving control strategy is placed beside the switch between the active control and energy regeneration. The vehicle simulation manifests that the energy-saving control strategy can effectively inhibit body movement, including vibration, roll, and pitch, while exhibiting a good road holding. A single linear motor used for the suspension system deteriorates the dynamic performance during energy regeneration and cannot guarantee the system reliability because of its low passive damping. Thus, a new integrated electromagnetic actuator prototype is developed, and the bench test shows that the prototype can satisfy the control requirements of the energy-saving control strategy.
Funder
Key Research and Development Program, Jiangsu
Natural Science Research Project, Jiangsu Province
Key Research and Development Program, Zhenjiang
National Natural Science Foundation Project
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献