Vehicle axle identification using wavelet analysis of bridge global responses

Author:

Yu Yang1,Cai CS1,Deng Lu2

Affiliation:

1. Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, Louisiana, USA

2. College of Civil Engineering, Hunan University, Changsha, Hunan, China

Abstract

Bridge weigh-in-motion (BWIM) technique uses an instrumented bridge as a weighing scale to estimate vehicle weights. Traditional BWIM systems use axle detectors placed on the road surface to identify vehicle axles. However, the axle detectors have poor durability due to the direct exposure to the traffic. To resolve this issue, a free-of-axle-detector (FAD) algorithm, which eliminates the use of axle detectors, was proposed. As a further improvement to simplify the BWIM systems, the concept of nothing-on-road (NOR) BWIM was recently introduced. The axle identification method proposed in this paper is an attempt to achieve the NOR BWIM, i.e., using bridge global responses to identify vehicle axles. Wavelet analysis is applied to extract the axle information from the global responses. This allows the BWIM technique to be achieved with only weighing sensors. Numerical simulations are conducted using three-dimensional vehicle and bridge models and the effect of several parameters, including sampling frequency, road surface condition and measurement noise on the identification accuracy is investigated. The results demonstrate that the proposed identification method using wavelet analysis can accurately identify vehicle axles, except for cases where the road surface condition is rough or measurement noises exceed certain levels.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3