Machine Learning and Signal Processing for Bridge Traffic Classification with Radar Displacement Time-Series Data

Author:

Arnold Matthias12,Keller Sina2ORCID

Affiliation:

1. ci-tec GmbH, 76139 Karlsruhe, Germany

2. Institute of Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

Abstract

This paper introduces a novel nothing-on-road (NOR) bridge weigh-in-motion (BWIM) approach with deep learning (DL) and non-invasive ground-based radar (GBR) time-series data. BWIMs allow site-specific structural health monitoring (SHM) but are usually difficult to attach and maintain. GBR measures the bridge deflection contactless. In this study, GBR and an unmanned aerial vehicle (UAV) monitor a two-span bridge in Germany to gather ground-truth data. Based on the UAV data, we determine vehicle type, lane, locus, speed, axle count, and axle spacing for single-presence vehicle crossings. Since displacement is a global response, using peak detection like conventional strain-based BWIMs is challenging. Therefore, we investigate data-driven machine learning approaches to extract the vehicle configurations directly from the displacement data. Despite a small and imbalanced real-world dataset, the proposed approaches classify, e.g., the axle count for trucks with a balanced accuracy of 76.7% satisfyingly. Additionally, we demonstrate that, for the selected bridge, high-frequency vibrations can coincide with axles crossing the junction between the street and the bridge. We evaluate whether filtering approaches via bandpass filtering or wavelet transform can be exploited for axle count and axle spacing identification. Overall, we can show that GBR is a serious contender for BWIM systems.

Funder

German Federal Ministry of Education and Research

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Approaches for Vehicle Counting on Bridges Based on Global Ground-Based Radar Data;ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2024-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3