Affiliation:
1. Nanjing Tech University, China
2. Yangzhou University, China
Abstract
Due to the low speed and heavy load conditions of slewing bearings, extracting of effective features for fault diagnosis and prediction is difficult but crucial. Moreover, challenges such as large data volumes, unlabeled and multi-source bring more difficulties for advanced prognosis and health management methods. To solve these problems, a novel method for performance degradation assessment of bearings based on raw signals is proposed. In this methodology, a combination of deep auto-encoder (DAE) algorithm and particle filter algorithm is utilized for feature extraction and remaining useful life (RUL) prediction. First, the raw vibration signal is employed to train parameters of a restricted Boltzmann machine to build the DAE model. Through encoding and decoding multi-source data, root mean square error of reconstruction error between the raw signal and reconstructed signal is employed to detect incipient faults of slewing bearings. Then, degradation trend model is established by particle filtering to predict RUL of bearings. The effectiveness of proposed method is validated using simulated and experimental vibration signals. Results illustrate that proposed method can evaluate the performance degradation process and RUL of slewing bearings.
Funder
the Postgraduate Research & Practice Innovation Program of Jiangsu Province
the National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献