Automatic incipient fault detection and health state assessment of rolling element bearings using pruned exact linear time method

Author:

Buchaiah Sandaram1,Shakya Piyush1ORCID

Affiliation:

1. Engineering Asset Management Group, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, India

Abstract

Rolling element bearing is a crucial component in rotating machines. The existence of faults in the bearing causes sudden failures, resulting in catastrophic failure of machines. Incipient fault detection and health state assessment are the essential tasks in condition-based maintenance to avoid machine failures. This paper proposes a new method, the Pruned Exact Linear Time, for identifying the incipient faults and following damage states in the bearing. When a fault initiates in the bearing, there is an increment in the vibration response. This increment can be quantified by the degradation indicator computed from the vibration signal. The Variational Mode Decomposition technique is used to de-noise the vibration signals. Various statistical features are derived from the de-noised signal, and the best feature subset is chosen by the Recursive Feature Elimination method. Then, the significant bearing life degradation indicator is computed using the Reconstruction Independent Component Analysis method by fusing selected features. A novel index is formulated for computing the percentage of failure, which can identify whether the bearing is in a mild failure state or medium failure state. The efficiency of the proposed framework is demonstrated using experimental bearing datasets.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3