Adaptive fractional-order backstepping sliding mode controller design for an electrostatically actuated size-dependent microplate

Author:

Karami Marzieh1,Kazemi Arash1,Vatankhah Ramin1ORCID,Khosravifard Amir1

Affiliation:

1. School of Mechanical Engineering, Shiraz University, Iran

Abstract

In this article, adaptive backstepping sliding mode controller and adaptive fractional backstepping sliding mode controller methods are proposed to control an electrostatic microplate with a piezoelectric layer. Based on the modified couple stress theory, a size-dependent mathematical model is proposed, in which the microplate is modeled using the Kirchhoff plate theory. To take into account the geometric nonlinearities, the von Kármán nonlinear strains are considered in the mathematical model. The Hamilton’s principle is used to obtain the nonlinear equation of motion of the system, which is then converted into a nonlinear ordinary differential equation via the Galerkin technique. The validity of the results obtained from the proposed reduced-order model is checked through direct numerical simulation of the partial differential equation using the finite element method. Finally, two Lyapunov-based control approaches that are adaptive backstepping sliding mode and adaptive fractional backstepping sliding mode are applied to the system. In the adaptive fractional backstepping sliding mode controller method, the adaptive control law is used to evaluate the upper bound of uncertainties and random disturbances. The fractional-order form of sliding surface is used to reduce the amount of chattering and also to improve the tracking error. In the results section, first, numerical studies are conducted to study the effect of system parameters, such as material length scale parameter, aspect ratio, fractional order, and robustness of the controller, on the performance of the system. In addition, the performances of the two control methods are compared, and the merits and demerits of each method are discussed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3