Fuzzy Fractional-Order PID Control for PMSG Based Wind Energy Conversion System with Sparse Matrix Converter Topology

Author:

Abdulrazaq Waleed Khaled Abdulrazaq1,Vural Ahmet Mete1ORCID

Affiliation:

1. Electrical and Electronics Engineering Department, Engineering Faculty, Gaziantep University, Gaziantep 27310, Turkey

Abstract

Sparse matrix converter (SMC) is an indirect AC-to-AC power electronic converter that has a fictitious DC link between rectification and inversion stages in which neither a capacitor nor an inductor, as the storage element, is utilized. Due to this advantage, SMC is used in AC drives, marine thrust systems, aerospace industry, as well as in wind energy applications. On the other hand, permanent magnet synchronous generator (PMSG) is competitive in wind turbine applications due to their prominent features. In this work, a fuzzy fractional-order PID (FFOPID) controller is designed for a PMSG based wind energy conversion system (WECS) which employs a three-phase three-level SMC. The FFOPID controller is chosen to combine the salient features of the fractional-order calculus and fuzzy logic operations to enhance the dynamic response of classical PID controller with fixed gains. The simulation results taken under different case studies are analyzed in detail, which demonstrate the superiority of the designed FFOPID controller over classical PID control approach in tracking d- and q-axis current references of the SMC at the output. With the designed control approach, the smooth control of the real and reactive power injections into the grid from the WECS are ensured with acceptable transient response.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3