Class-information–incorporated kernel entropy component analysis with application to bearing fault diagnosis

Author:

Zhou Hongdi12ORCID,Zhong Fei12,Shi Tielin3,Lai Wuxing3,Duan Jian3ORCID,Zhang Yongxiang4

Affiliation:

1. School of Mechanical Engineering, Hubei University of Technology, China

2. Key Laboratory of Modern Manufacturing Quality Engineering in Hubei Province, China

3. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, China

4. Department of Power Engineering, Naval University of Engineering, China

Abstract

Rolling bearings are present ubiquitously in industrial fields; timely fault diagnosis is of crucial significance in avoiding serious catastrophe. The extraction of ideal fault feature is a challenging task in vibration-based bearing fault detection. In this article, a novel method called class-information–incorporated kernel entropy component analysis is proposed for bearing fault diagnosis. The method is developed based on the Hebbian learning theory of neural network and the kernel entropy component analysis which attempts to compress the most Renyi quadratic entropy of input dataset after dimension reduction and presents a good performance for nonlinear feature extraction. Class-information–incorporated kernel entropy component analysis can take advantage of the label information of training samples to guide dimensional reduction and still follow the same simple mathematical formulation as kernel entropy component analysis. The high-dimensional feature dataset including time-domain, frequency-domain, and time–frequency domain characteristic parameters is first derived from the vibration signals. Then, the intrinsic geometric features are extracted by class-information–incorporated kernel entropy component analysis, and a classification strategy based on fusion information is applied to recognize different operating conditions of bearings. The experimental results demonstrated the feasibility and effectiveness of the proposed method.

Funder

The Natural Science Foundation of Hubei Province

Major Project for Technological Innovation of Hubei Province of China

The Scientific Research Foundation for Doctoral Program of Hubei University of Technology

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3