Affiliation:
1. Hubei Key Laboratory of Modern Manufacturing and Quality Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan, China
Abstract
Rolling bearings are present ubiquitously in mechanical equipment, timely fault diagnosis has great significance in guaranteeing the safety of mechanical operation. In real world industrial applications, the distribution of training dataset (source domain) and testing dataset (target domain) is often different and varies with operating environment, which may lead to performance degradation. In this study, a cross-domain fault diagnosis of rolling bearing method based on distance metric transfer learning (DMTL) and wavelet packet decomposition (WPD) is proposed. The Mahalanobis distance is adopted for learning the intrinsic similarity or dissimilarity between instances and learned by simultaneously maximizing the intra-class distances and minimizing the inter-class distances for target domain. The features of source domain and target domain are first extracted from original vibration signals by WPD which is a powerful tool in dealing with non-stationary signals and can provide meticulous analysis. Then, the DMTL model is adopted to eliminate the error propagation across different components, which can weaken the weight of low-quality instances and enhance the weight of high-quality samples. Finally, the k-nearest neighbor (KNN) classifier is applied to accomplish the cross-domain intelligent fault-type classification. The superiority and effectiveness of the proposed fault diagnosis model is validated by two diagnosis cases. The experimental results demonstrated that the proposed method performs better than other compared methods in recognizing various fault types and has the capability in handling the complex cross-domain adaptation scenarios.
Funder
Green Industry Technology Leading Program of Hubei University of Technology
National Natural Science Foundation of China
Scientific Research Foundation for High level Talents of Hubei University of Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献