Vibration based brake health monitoring using wavelet features: A machine learning approach

Author:

Alamelu Manghai T. M.1,Jegadeeshwaran R.1ORCID

Affiliation:

1. School of Mechanical and Building Sciences, Vellore Institute of Technology, Chennai Campus, Chennai, India

Abstract

In this study, the application of wavelets has been investigated for diagnosing the faults on a hydraulic brake system of a light motor vehicle using the vibration signals acquired from a brake test setup through a piezoelectric type accelerometer. An efficient brake system should provide reliable and effective performance in order to ensure safety . If it is not properly monitored, it may lead to a serious catastrophic effect such as accidents, frequent breakdown, etc. Hence, the brake system needs to be monitored continuously. The condition of the brake components and the vibration signals are interrelated. If the failure starts progressing, the vibration magnitude will also progress. Analyzing the vibration signals under the various fault conditions is the key process in fault diagnosis. In recent decades wavelets have been focused on in many fault diagnosis studies as the wavelets decompose the complex information into simple form with high precision for further analysis. The wavelet features were extracted in order to retrieve the information from the vibration signals using discrete wavelet transform. From that discretized signal under each fault condition, the relevant features were extracted and feature selection was carried out. The selected features were then classified using a set of machine learning classifiers such as best first tree (pre-pruning, post-pruning, and unpruned), Hoeffding tree (HT), support vector machine, and neural network. The classification accuracies of all the algorithms were compared and discussed. Among the considered classifier model, the HT model produced a better classification accuracy as 99.45% for the hydraulic brake fault diagnosis.

Funder

Science and Engineering Research Board

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3