Determination of Multi-Component Failure in Automotive System Using Deep Learning

Author:

O’Donnell John1,Yoon Hwan-Sik1

Affiliation:

1. The University of Alabama Department of Mechanical Engineering, College of Engineering, , P. O. Box 870276, Tuscaloosa, AL 35487-0276

Abstract

Abstract The connectivity of modern vehicles allows for the monitoring and analysis of a large amount of sensor data from vehicles during their normal operations. In recent years, there has been a growing interest in utilizing this data for the purposes of predictive maintenance. In this paper, a multi-label transfer learning approach is proposed using 14 different pretrained convolutional neural networks retrained with engine simulation data to predict the failure conditions of a selected set of engine components. The retrained classifier networks are designed such that concurrent failure modes of an exhaust gas recirculation, compressor, intercooler, and fuel injectors of a four-cylinder diesel engine can be identified. Time-series simulation data of various failure conditions, which include performance degradation, are generated to retrain the classifier networks to predict which components are failing at any given time. The test results of the retrained classifier networks show that the overall classification performance is good, with the normalized value of mean average precision varying from 0.6 to 0.65 for most of the retrained networks. To the best of the authors’ knowledge, this work represents the first attempt to characterize such time-series data utilizing a multi-label deep learning approach.

Funder

National Science Foundation

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3