Simplified model for predicting acoustic performance of an underwater sound absorption coating

Author:

Meng Tao1

Affiliation:

1. School of Mechanical Engineering, Guizhou University, Guiyang, China

Abstract

A simplified analytical model for predicting the acoustic performance of an underwater sound absorption coating is presented in this paper. The sound absorption coating contains hexagonally arrayed cylindrical cavities, so the unit cell of sound absorption coating could be approximated as a cylindrical tube. When the plane wave normally impinges on the sound absorption coating, the axisymmetric wave which propagates in the viscoelastic cylindrical tube will be excited. According to the two-dimensional analytic model, only the first mode (the lowest) should be taken into account in the acoustic performance estimation at low frequencies, because the attenuation of the first propagating mode is much lower than the others. Based on this conclusion, the simplified analytical approach has been given as follows: to solve the characteristic equation, the wavenumber of axisymmetric wave will be obtained firstly; then, the effective impedance of viscoelastic cylindrical tube can be calculated after the axial stress and the axial displacement are averaged, and the reflection coefficient and the transmission coefficient of sound absorption coating can be easily calculated by using the transfer matrix. Comparisons of the simplified analytical model to the finite element method and to the experiment data validate that the present model is a workable and satisfactory approach to predict the acoustic performance of sound absorption coating. In the final section, the effects of several parameters such as the cavity geometry and the acoustical termination on the performance of sound absorption coating have been discussed using the present model.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Liquid-solid synergistic mechanism sound absorption for underwater anechoic coating;International Journal of Mechanical Sciences;2024-05

2. A New Multi-Mechanism Synergistic Acoustic Structure for Underwater Low-Frequency and Broadband Sound Absorption;Journal of Marine Science and Engineering;2023-12-15

3. Underwater metagratings for sub-kilohertz low frequency and broadband sound absorption;International Journal of Mechanical Sciences;2023-12

4. Analytical and numerical study on absorption of viscoelastic multilayers with variable cross section and cavity;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-08-28

5. Global Sound Absorption Prediction for a Composite Coating Laid on an Underwater Submersible in Debonding States;Journal of Marine Science and Engineering;2023-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3