A New Multi-Mechanism Synergistic Acoustic Structure for Underwater Low-Frequency and Broadband Sound Absorption

Author:

Shi Kangkang12,Li Dongsheng12,Hu Dongsen12,Shen Qi12,Jin Guoyong3

Affiliation:

1. National Key Laboratory of Ship Vibration and Noise, China Ship Scientific Research Center, Wuxi 214082, China

2. Taihu Laboratory of Deepsea Technological Science, Wuxi 214082, China

3. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

The acoustic absorption characteristics of anechoic coatings attached to the surface of underwater vehicles are closely related to their acoustic stealth. Owing to the essential property of local resonance, the narrow sound-absorption band cannot meet the underwater broadband sound absorption requirements. To this end, a multi-mechanism synergistic composite acoustic structure (MMSC−AS) was designed according to the integration of multiple acoustic dissipation mechanisms in this paper. Then, the acoustical calculation model for MMSC−AS was developed by using the graded finite element method (G-FEM), and the feasibility and the correctness of the established acoustical calculation model were verified. The underwater sound absorption behaviors of MMSC−AS were studied, and the optimization of the sound absorption characteristics of the MMSC−AS was also carried out. The results indicated that the calculation accuracy of the G-FEM was better than that of the FEM under the condition of the same mesh elements. Moreover, there were many sound wave regulation mechanisms in the MMSC−AS, and the synergy between the mechanisms enriched the mode of sound acoustic energy dissipation, which could widen the absorption band with effect. This study provides theoretical and technical basis for breaking through the challenge of low-frequency and broadband acoustic structure design of underwater vehicles.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3