Affiliation:
1. State Key Laboratory of Traction Power, Southwest Jiaotong University, China
Abstract
Considering the coupling vibration of a flexible carbody and the underneath suspended equipment, a vertical coupled vibration model of a high-speed train was constructed. A roller test rig was conducted to validate the theoretical model. To reduce carbody elastic vibration, the semi-active vibration reduction models based on the Sky-hook and the linear quadratic regulator control strategies were proposed. The semi-active suspension system was installed between the carbody and the suspended equipment, and the influence of the semi-active suspension on carbody vibration reduction was analyzed. The results show that the semi-active suspension can significantly reduce carbody vibration, especially at high operating speeds. The higher the elastic vibration of carbody, the better the vibration reduction effect of the semi-active suspension. Compared with the passive suspension and the semi-active suspension, the semi-active suspension of the Sky-hook control has a relatively wider vibration control range, and has an obvious effect on carbody rigid and elastic vibration reduction. Although the semi-active suspension of the linear quadratic regulator control had little influence on the rigid carbody vibration, it could reduce most of the elastic carbody vibration.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Independent Research and Development Project of the State Key Laboratory of Traction Power
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献