Active suspension control using novel HB3C optimized LQR controller for vibration suppression and ride comfort enhancement

Author:

Haseen S. Fahira1ORCID,Lakshmi P.1

Affiliation:

1. Department of Electrical and Electronics Engineering, College of Engineering, Guindy, Anna University, Chennai, India

Abstract

This article addresses the optimization of a Vehicle Active Suspension System (VASS) through the application of a Linear Quadratic Regulator (LQR) controller. The primary objective is to enhance ride comfort and ensure vehicle stability by addressing the divergent needs of vibration control. The research identifies key issues in existing optimization algorithms, namely, the exploration stage inefficiency in Big Bang Big Crunch Optimization (B3C) and the slow convergence rate in Coyote Optimization (CO). To overcome these challenges, a novel hybrid algorithm, Hybrid Coyote optimization based Big Bang Big Crunch (HB3C), is proposed. The research objective is to optimize the LQR weighting matrices using the HB3C algorithm, aiming for improved ride comfort and vehicle safety. The problem statement involves the inadequacies of existing algorithms in addressing the exploration and convergence issues. The motivation lies in enhancing the efficiency of VASS through optimal control, leading to better ride comfort and safety. The methodology involves integrating CO within a loop with B3C to compute the optimum reduction rate for the algorithm. Since, B3C algorithm’s success is highly dependent on selecting the ideal reduction rate. This hybrid approach is then applied to optimize the existing LQR weighting matrices. The results are evaluated in terms of time domain and frequency domain response analysis, with a focus on ride comfort based on ISO 2631-1 standards. The study demonstrates a maximum reduction of approximately 74% achieved by the optimized HB3C-LQR controllers.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel HCOB3C Optimization Based Fuzzy Logic Controller Design for Experimental Active Suspension System;Iranian Journal of Science and Technology, Transactions of Electrical Engineering;2024-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3