Robust integral sliding mode control of tower cranes

Author:

Aboserre Lobna T1,El-Badawy Ayman A12ORCID

Affiliation:

1. Mechatronics Engineering Department, German University in Cairo, Egypt

2. Mechanical Engineering Department, Al-Azhar University, Egypt

Abstract

In this study, integral sliding mode control is proposed for tower cranes to ensure precise tracking of the desired position while reducing the oscillations of the payload. The nonlinear robust controller is designed based on high fidelity nonlinear dynamical model, unlike the decoupled or linearized models used in the literature. The advantage of this approach is reducing the model uncertainties resulting in a lower control effort demand that would be required by the sliding mode controller. Moreover, the stability of the under-actuated tower crane system is analyzed using Lyapunov theory to guarantee the practical stability of error dynamics. Experimental results of the proposed control approach are compared with conventional sliding mode control to show its effectiveness and robustness against real system uncertainties.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model-free composite sliding mode adaptive control for 4-DOF tower crane;Automation in Construction;2024-11

2. Robust adaptive decoupled-like sliding mode controller design based on iterative learning for overhead cranes;Transactions of the Institute of Measurement and Control;2024-08-08

3. Adaptive sliding mode anti-swing control of 4-DOF tower crane based on a nonlinear disturbance observer;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-07-25

4. Tower crane systems modeling and adaptive robust sliding mode control design under unknown frictions and wind disturbances;Transactions of the Institute of Measurement and Control;2024-07-25

5. Trajectory tracking of a mobile robot manipulator using fractional backstepping sliding mode and neural network control methods;International Journal of Modelling and Simulation;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3