Dynamic Model of a Rotating Channel Used in the Steel Industry and Implementation of a Controller

Author:

Gasparetto Alessandro1,Miani Stefano1

Affiliation:

1. Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica, Università di Udine, Via delle Scienze, 208, I-33100 Udine, Italy

Abstract

In the steel industry, the steel bars coming out from the last stand of the rolling train must be conveyed to the cooling bed. For this purpose, various types of devices are used in the different steel factories. In this paper, the rotating channel used in a single steel company is described and investigated. The problem of deriving an adequate dynamic model for the rotating channel is tackled; the model is then exploited to design a controller which can be employed in the real application of the rotating channel. A lumped parameter model of the rotating channel has been designed and used in this work. Moreover, a distributed parameter model has also been implemented, so as to be able to compare the two models and to evaluate the error made by using the lumped parameter model instead of the distributed parameter model. The lumped parameter model has then been used as a basis for the implementation of a time-varying control scheme, which is also presented in the paper. The control has then been successfully tested on an accurate simulator of the plant. The results obtained from the tests have been very encouraging.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A simple hierarchy for computing controlled invariant sets;Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control;2020-04-17

2. Performance Evaluation of an LQG Controller of a Robotic Link with Fractional Dampers Based on Their Integer–Order Approximation;Mechanism Design for Robotics;2018-08-31

3. Mode selection for reduced order modeling of mechanical systems excited at resonance;International Journal of Mechanical Sciences;2016-08

4. Control with time-domain constraints;Set-Theoretic Methods in Control;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3