Diagnosis of rotating machine unbalance using machine learning algorithms on vibration orbital features

Author:

Jablon Leonardo S12,Avila Sergio L2ORCID,Borba Bruno1,Mourão Gustavo L1,Freitas Fabrizio L1,Penz Cesar A2

Affiliation:

1. AQTECH Power Prognosis Inc., Brazil

2. Department of Electrotechnical Engineering, Federal Institute of Santa Catarina, Brazil

Abstract

The diagnosis of failures in rotating machines has been subject to studies because of its benefits to maintenance improvement. Condition monitoring reduces maintenance costs, increases reliability and availability, and extends the useful life of critical rotating machinery in industry ambiance. Machine learning techniques have been evolving rapidly, and its applications are bringing better performance to many fields. This study presents a new strategy to improve the diagnosis performance of rotating machines using machine learning strategies on vibration orbital features. The advantage of using orbits in comparison to other vibration measurement systems is the simplicity of the instrumentation involved as well as the information multiplicity contained in the orbit. On the other hand, rolling element bearings are prevalent in industrial machinery. This type of bearing has less orbital oscillation and is noisier than sliding contact bearings. Therefore, it is more difficult to extract useful information. Practical results on an industry motor workbench with rolling element bearings are presented, and the algorithm robustness is evaluated by calculating diagnosis accuracy using inputs with different signal-to-noise ratios. For this kind of noisy scenario where signal analysis is naturally tough, the algorithm classifies approximately 85% of the time correctly. In a completely harsh environment, where the signal-to-noise ratio can be smaller than −25 dB, the accuracy achieved is close to 60%. These statistics show that the strategy proposed can be robust for rotating machine unbalance condition diagnosis even in the worst scenarios, which is required for industrial applications.

Funder

Santa Catarina State Research and Innovation Support Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3