Affiliation:
1. Technische Universität Dresden, Germany
Abstract
The application of
Artificial Intelligence (AI)
approaches in industrial maintenance for fault detection and prediction has gained much attention from scholars and practitioners. This survey systematically assesses and classifies the state-of-the-art algorithms applied to data-driven maintenance in recent literature. The taxonomy provides a so far not existing overview and decision aid for research and practice regarding suitable AI approaches for each maintenance application. Moreover, we consider trends and further research demand in this area. Finally, a newly developed holistic maintenance framework contributes to a practice-oriented implementation of AI and considers crucial managerial aspects of an efficient maintenance system.
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Theoretical Computer Science