Pasteurization of Salmonella spp. in black fungus (Auricularia auricula) powder by radio frequency heating

Author:

Geng Zheng1,Ye Pengfei1,Zhou Liangfu1,Fu Hongfei1,Chen Xiangwei1,Wang Yequn1,Wang Yunyang1ORCID

Affiliation:

1. College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China

Abstract

Radio frequency (RF) heating has been studied to inactivate bacteria in some powder foods. In this study, a 6 kW, 27.12 MHz RF system was used to pasteurize Salmonella in black fungus (Auricularia auricula) powder. The effects of different conditions (initial aw, electrodes gaps, particle sizes) on RF heating rate and uniformity were investigated. The results showed that RF heating rate was significantly ( p < 0.05) improved with decreasing electrodes gap and increasing initial aw, and the heating rate was the slowest when the particle size was 120–160 mesh. However, these factors had no significant ( p > 0.05) influence on heating uniformity. RF pasteurization of Salmonella in black fungus powder was also studied. The results showed that, to inactivate Salmonella for 5 log reductions in the cold spot (the center of surface layer), the time needed and bacteria heat resistance at designated temperature (65, 75, 85 °C) decreased with increasing aw, and the first order kinetics and Weibull model could be used to fit inactivation curves of Salmonella with well goodness. Quality analysis results showed that although RF pasteurization had no significant ( p > 0.05) effect on Auricularia auricula polysaccharide (AAP) and total polyphenols, obvious changes were found on color. Results suggested that RF pasteurization can be considered as an effective pasteurization method for black fungus powder.

Funder

General Program of National Natural Science Foundation of China

Key R&D Project of Shaanxi Province

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3