Multiloop state-dependent nonlinear time-varying sliding mode control of unmanned small-scale helicopter

Author:

Ozcan Sinan1ORCID,Salamci Metin U2,Nalbantoglu Volkan3

Affiliation:

1. Turkish Aerospace Industries, Helicopter Division, Ankara, Turkey

2. Department of Mechanical Engineering, Gazi University, Ankara, Turkey

3. School of Civil Aviation, Atilim University, Ankara, Turkey

Abstract

Time delays, parameter uncertainties, and disturbances are the fundamental problems that hinder the stability and reduce dramatically the tracking performance of dynamical systems. In this paper, a new state-dependent nonlinear time-varying sliding mode control autopilot structure is proposed to cope with these dynamical and environmental complexities for an unmanned helicopter. The presented technique is based on freezing the nonlinear system equations on each time step and designing a controller using the frozen system model at this time step. The proposed method offers an improved performance in the presence of major disturbances and parameter uncertainties by adapting itself to possible dynamical varieties without a need of trimming the system on different operating conditions. Unlike the existing linear cascade autopilot structure, this study also proposes a nonlinear cascade state-dependent coefficient helicopter autopilot structure consisting of four separate nonlinear sub-systems. The proposed method is tested through the real time and PC-based simulations. To show the performance of the proposed robust method, it is also bench-marked against a linear sliding control control in PC-based simulations.

Funder

Turkish Aerospace Industries

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3