An internal model control-cascade Proportion-Integration-Differentiation method for manipulation of nano-quad-rotors

Author:

Wang Yuan1ORCID,Zheng Xiangming1,Li Hongda1,Li Xiaoran2

Affiliation:

1. Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicle, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China

2. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China

Abstract

Nowadays, manipulation of quad-rotors faces complexity in controller parameter tuning process and system instability under uncertainties. Internal model control is featured with less controller parameters, simpler tuning process than conventional methods, good robustness and perfect capability in rejection of uncertainties. All its merits can be applied in the field of nano-quad-rotor control since its internal model is easy to be obtained and the suffered uncertainties, especially persistent ones such as model uncertainties and winds, can be rejected by the algorithm effectively. In this paper, an internal model control cascade Proportion-Integration-Differentiation (PID) method is developed to enhance the robustness and improve the capability of uncertainty rejection of nano-quad-rotors flying under persistent uncertainties. The system can be stabilized in a very easy way with all controller parameters tuned within 0 to 1. Comparison with internal model control method was carried out numerically; the results show that, in dealing with persistent uncertainties, the internal model control cascade PID-based method presents significant superiority in the maintenance of both the accuracy of trajectory tracking and the stability of attitude.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3