Aerosolized Particle Reduction: A Novel Cadaveric Model and a Negative Airway Pressure Respirator (NAPR) System to Protect Health Care Workers From COVID-19

Author:

Khoury Tawfiq1,Lavergne Pascal2,Chitguppi Chandala1,Rabinowitz Mindy1,Nyquist Gurston1,Rosen Marc1,Evans James2

Affiliation:

1. Department of Otolaryngology, Head & Neck Surgery, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA

2. Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA

Abstract

ObjectivesThis study aimed to identify escape of small-particle aerosols from a variety of masks using simulated breathing conditions. This study also aimed to evaluate the efficacy of a negative-pressure environment around the face in preventing the escape of small aerosolized particles.Study DesignThis study is an evaluation study with specific methodology described below.SettingThis study was performed in our institution’s fresh tissue laboratory.Subjects and MethodsA fixed cadaver head was placed in a controlled environment with a black background, and small-particle aerosols were created using joss incense sticks (mass-median aerosol diameter of 0.28 µ). Smoke was passed through the cadaver head, and images were taken with a high-resolution camera in a standardized manner. Digital image processing was used to calculate relative amounts of small-particle escape from a variety of masks, including a standard surgical mask, a modified Ambu mask, and our negative airway pressure respirator (NAPR).ResultsSignificant amounts of aerosolized particles escaped during the trials with no mask, a standard surgical mask, and the NAPR without suction. When suction was applied to the NAPR, creating a negative-pressure system, no particle escape was noted.ConclusionWe present a new and effective method for the study of small-particle aerosols as a step toward better understanding the spread of these particles and the transmission of coronavirus disease 2019. We also present the concept of an NAPR to better protect health care workers from aerosols generated from the upper and lower airways.

Publisher

SAGE Publications

Subject

Otorhinolaryngology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3