Suction mask device: a simple, inexpensive, and effective method of reducing spread of aerosolized particles during endoscopic endonasal surgery in the era of COVID-19

Author:

Hara Takuma12,Zachariah Marcus A.3,Li Ruichun1,Martinez-Perez Rafael1,Carrau Ricardo L.14,Prevedello Daniel M.14

Affiliation:

1. Departments of Neurosurgery and

2. Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan

3. Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi; and

4. Head and Neck Surgery, Wexner Medical Center, The Ohio State University, Columbus, Ohio;

Abstract

OBJECTIVE Aerosol-generating procedures, including endoscopic endonasal surgery (EES), are a major risk for physicians during the COVID-19 pandemic. Techniques for reducing aerosolization and risk of transmission of COVID-19 during these procedures would be valuable to the neurosurgical community. The authors aimed to simulate the generation of small-particle aerosols during EES and craniectomy in order to develop methods to reduce the spread of aerosolized particles, and to test the effectiveness of these methods. METHODS This study was performed at the Anatomical Laboratory for Visuospatial Innovations in Otolaryngology and Neurosurgery at The Ohio State University. The following two scenarios were used to measure three different particle sizes (0.3, 2.5, and 10 µm) generated: 1) drilling frontotemporal bone, simulating a craniectomy; and 2) drilling sphenoid bone, simulating an endonasal approach. A suction mask device was created with the aim of reducing particle release. The presence of particles was measured without suction, with a single Frazier tip suction in the field, and with the suction mask device in addition to the Frazier suction tip. Particles were measured 12 cm from the craniectomy or endonasal drilling region. RESULTS In the absence of any aerosol-reducing devices, the number of particles measured during craniectomy was significantly higher than that generated by endonasal drilling. This was true regardless of the particle size measured (0.3 µm, p < 0.001; 2.5 µm, p < 0.001; and 10 µm, p < 0.001). The suction mask device reduced the release of particles of all sizes measured in the craniectomy simulation (0.3 µm, p < 0.001; 2.5 µm, p < 0.001; and 10 µm, p < 0.001) and particles of 0.3 µm and 2.5 µm in the single Frazier suction simulation (0.3 µm, p = 0.031; and 2.5 µm, p = 0.026). The suction mask device further reduced the release of particles of all sizes during EES simulation (0.3 µm, p < 0.001; and 2.5 µm, p < 0.001) and particles of 0.3 µm and 2.5 µm in the single Frazier suction simulation (0.3 µm, p = 0.033; and 2.5 µm, p = 0.048). Large particles (10 µm) were not detected during EES. CONCLUSIONS The suction mask device is a simple and effective means of reducing aerosol release during EES, and it could potentially be used during mastoidectomies. This could be a valuable tool to reduce the risk of procedure-associated viral transmission during the COVID-19 pandemic.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3