Affiliation:
1. Department of Mechanics and Industrial Production, Mondragon Unibertsitatea, Spain
2. Department de Ciencia dels Materials i Eng. Met. Centre Català del Plàstic, Universitat Politécnica de Catalunya, Spain
Abstract
Carbon fiber reinforced cyclic butylene terephthalate composites have been processed by vacuum infusion under two different non-isothermal processing routes starting from a one-component cyclic butylene terephthalate resin system. One of them was processed under a short cycle with fast cooling, and another one was processed under a long cycle with slow cooling. Both the micro-structure and low-energy impact properties of the composites have been investigated. On one hand, the fast cooling generates randomly dispersed voids and porosities in the resin-rich regions during the crystallization-induced shrinkage. On the other hand, the slow cooling generates a highly crystalline and brittle matrix without porosity. However, many micro-cracks appear in the resin-rich regions due to the combination of the brittleness and longitudinal shrinkage of the matrix. The critical delamination energy of the slow cooled composite is slightly higher than that of the fast cooled one, whereas this latter absorbs over 25% more energy before being penetrated, as well as performing in a less brittle way. The lower interlaminar shear strength of the fast cooled composite is suggested to be the origin of its higher energy absorbing capability and less brittle behavior.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献