Impact on Laminated Composite Materials

Author:

Abrate Serge1

Affiliation:

1. Department of Mechanical and Aerospace Engineering and Engineering Mechanics, University of Missouri–Rolla, Rolla MO 65401

Abstract

Laminated composite materials are used extensively in aerospace and other applications. With their high specific modulus, high specific strength, and the capability of being tailored for a specific application, these materials offer definite advantages compared to more traditional materials. However, their behavior under impact is a concern, since impacts do occur during manufacture, normal operations, or maintenance. The situation is critical for impacts which induce significant internal damage, undetectable by visual inspection, that cause large drops in the strength and stability of the structure. Impact dynamics, including the motion of both the impactor and the target and the force developed at the interface, can be predicted accurately using a number of models. The state of stress in the vicinity of the impact is very complex and requires detailed analyses. Accurate criteria for predicting initial failure are generally not available, and analyses after initial failure are questionable. For these reasons, it can be said that a general method for estimating the type and size of impact damage is not available at this time. However, a large amount of experimental data has been published, and several important features of impact damage have been identified. In particular, interply delaminations are known to occur at the interface between plies with different fiber orientation. Their shape is generally elongated in the direction of the fibers in the lower ply at that interface. The delaminated area is known to increase linearly with the kinetic energy of the impactor after a certain threshold value has been reached. The effect of impact damage on the properties of the laminate has obvious implications for design and inspection of actual structures. Experimental results concerning the residual strength of impact damaged specimens subjected to tension, compression, shear, bending, and both static and fatigue loading are available. Analyses concentrate primarily on predicting residual tensile and compressive strength. In order to fully understand the effect of foreign object impact damage, one should understand impact dynamics and be able to predict the location, type, and size of the damage induced and the residual properties of the laminate. This article is organized along these lines and presents a comprehensive review of the literature on impact of laminated composites, considering both experimental and analytical approaches.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3