Monomer Selection for In Situ Polymerization Infusion Manufacture of Natural-Fiber Reinforced Thermoplastic-Matrix Marine Composites

Author:

Qin Yang,Summerscales JohnORCID,Graham-Jones JasperORCID,Meng Maozhou,Pemberton Richard

Abstract

Awareness of environmental issues has led to increasing interest from composite researchers in using “greener” materials to replace synthetic fiber reinforcements and petrochemical polymer matrices. Natural fiber bio-based thermoplastic composites could be an appropriate choice with advantages including reducing environmental impacts, using renewable resources and being recyclable. The choice of polymer matrix will significantly affect the cost, manufacturing process, mechanical properties and durability of the composite system. The criteria for appropriate monomers are based on the processing temperature and viscosity, polymer mechanical properties, recyclability, etc. This review considers the selection of thermoplastic monomers suitable for in situ polymerization during resin, now monomer, infusion under flexible tooling (RIFT, now MIFT), with a primary focus on marine composite applications. Given the systems currently available, methyl methacrylate (MMA) may be the most suitable monomer, especially for marine composites. MMA has low process temperatures, a long open window for infusion, and low moisture absorption. However, end-of-life recovery may be limited to matrix depolymerization. Bio-based MMA is likely to become commercially available in a few years. Polylactide (PLA) is an alternative infusible monomer, but the relatively high processing temperature may require expensive consumable materials and could compromise natural fiber properties.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference195 articles.

1. Marine Applications of Advanced Fibre-Reinforced Composites;Graham-Jones,2015

2. Marine Composites: Design and Performance;Pemberton,2019

3. Biodegradable composites based on lignocellulosic fibers—An overview

4. Microplastics in the marine environment

5. The physical impacts of microplastics on marine organisms: A review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3