A data mining approach to the diagnosis of failure modes for two serial fastened sandwich composite plates

Author:

Ballı Serkan1

Affiliation:

1. Department of Information Systems Engineering, Muğla Sıtkı Koçman University, Turkey

Abstract

The aim of this study is to diagnose and classify the failure modes for two serial fastened sandwich composite plates using data mining techniques. The composite material used in the study was manufactured using glass fiber reinforced layer and aluminum sheets. Obtained results of previous experimental study for sandwich composite plates, which were mechanically fastened with two serial pins or bolts were used for classification of failure modes. Furthermore, experimental data from previous study consists of different geometrical parameters for various applied preload moments as 0 (pinned), 2, 3, 4, and 5 Nm (bolted). In this study, data mining methods were applied by using these geometrical parameters and pinned/bolted joint configurations. Therefore, three geometrical parameters and 100 test data were used for classification by utilizing support vector machine, Naive Bayes, K-Nearest Neighbors, Logistic Regression, and Random Forest methods. According to experiments, Random Forest method achieved better results than others and it was appropriate for diagnosing and classification of the failure modes. Performances of all data mining methods used were discussed in terms of accuracy and error ratios.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3