The intersection of damage evaluation of fiber-reinforced composite materials with machine learning: A review

Author:

Nelon Christopher1ORCID,Myers Oliver1ORCID,Hall Asha2

Affiliation:

1. Vehicle Technology Directorate, SMART Laboratory, Clemson University, USA

2. Vehicle Technology Directorate, U.S. Army Research Laboratory, USA

Abstract

Machine learning (ML) has emerged as a useful predictive tool based on mathematical and statistical relationships for various engineering problems. The pairing of structural health monitoring (SHM) and nondestructive evaluation (NDE) methods with ML algorithms has yielded beneficial results in addressing the damage state of a material or system. Damage state descriptions addressed with ML include detecting a damage mechanism, locating a mechanism, identifying the type of mechanism, assessing the extent of the damage mechanism, and estimating the useful remaining life of a material or system. Damage evaluation research of composite materials has progressed with the increased usage of composite structural elements in the aerospace industry. NDE methods are a viable candidate for pairing with ML algorithms to improve damage state monitoring of composite materials due to the complexity associated with the structure of composites. Fiber-reinforced polymers (FRP), for example, contain at least two constituent materials a fiber and matrix material whose mechanical behavior and interactions contribute to the performance of an FRP. Unlike conventional composite analytical models that require explicit information about the constituents and microstructure of a laminate, an ML algorithm can construct damage evaluation predictions when employing exclusively past operational performance or data from an SHM or NDE method. A researcher determines the type of data selected when applying an ML model for trend analysis, anomaly detection, or prediction making. However, no one specific input feature is required for utilizing an ML model, and examples of possible data features include material properties, physical dimensions, and collected evaluation data. In the present review, applications of ML combined with the damage state evaluation of composite materials, particularly examining FRPs, are discussed to demonstrate the predictive capabilities of ML and its viability for future applications, especially in industrial environments, to minimize costs and improve damage detection rates.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3