Non-contact embedded sensing by Magnetostrictive Carbon Fiber Reinforced Polymer (MagCFRP): A smart material for early inter-lamina localized damage detection

Author:

Williams Brandon12ORCID,Coatney Michael1,Hall Asha1,Myers Oliver2ORCID,Seifu Dereje3

Affiliation:

1. U.S. Army DEVCOM Army Research Laboratory, Aberdeen, MD, USA

2. Clemson University, Clemson, SC, USA

3. Morgan State University, Baltimore, MD, USA

Abstract

Although failure mechanics and plasticity of composite materials is a relatively new and volatile field, it has been long realized in the composite materials community that a composite’s true integrity lies in the constituents’ interfacial health. Composite materials allow scientists and engineers to design structural architectures with directional stress, strain, and thermal fields in mind while simultaneously reducing the system’s overall weight. While there are advantages to using composite materials like carbon fiber reinforced polymers (CFRPs), designing and implementing long-term sustainable aerospace structures out of CFRPs is bottlenecked by the brittle catastrophic failure mechanism high strength carbon composites exhibit. As the demand for these materials in critical loading regimes increases, it is paramount that scientists and engineers understand how CFRPs will behave in real-time and in predictive models for load profiles. This research’s motivation comes from the US Army’s future vertical lift vehicle initiative to transition from interval-based maintenance to condition-based maintenance (CDB). This paper explores a real-time, non-contact, and non-destructive evaluation (NDE) method for composite materials by performing localized magnetic flux scans (32 mm2 field of view) of CFRP embedded with Terfenol-D ([Formula: see text] microns in diameter), a magnetostrictive material. For Magnetostrictive Carbon Fiber Reinforced Polymer (MagCFRP) elastic regime testing, there was an observed localized magnetic flux gradient of more than 5 mT (4%) with a reversible flux of 100%. For MagCFRP elastic-plastic regime testing, a localized magnetic flux gradient of more than 3 mT (2%) with a reversible flux of only 25% was observed. Terfenol-D embedded CRFPs have shown promising results for detecting instantaneous stress and strain levels and detecting deviations in inter-lamina residual stress after critical loading. Acoustic emission (AE), Digital Image Correlation (DIC), and X-ray computed tomography (CT) scanning were used to validate the observed results.

Funder

Oak Ridge Associated Universities

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3