A new quantitative acoustic emission model for damage characterization of composite laminates using original waveforms

Author:

Xu Dong1,Liu Pengfei2ORCID,Chen Zhiping1,Wu Tao3

Affiliation:

1. Institute of Chemical Machinery and Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, China

2. Ocean College, Zhejiang University, Zhoushan, China

3. Institute of Lightweight Engineering and Polymer Technology, Technische Universität Dresden, Dresden, Germany

Abstract

The correlation between acoustic characteristics and mechanical behaviors shows great significance for health monitoring and characterization. This paper develops a new quantitative model based on the modified Mel-frequency cepstral analysis and statistical methods so as to link acoustic emission (AE) features with mechanical behaviors of end-notched flexure (ENF) composite laminates. First, the Mel-frequency cepstral analysis in automatic speech recognition is modified to adapt to AE sensors and signals. Second, the modified Mel-frequency cepstral coefficients (MFCCs) are extracted from original waveforms of AE hits for damage characterization of composites. MFCC0 is taken as an effective feature to qualitatively discriminate damage stages and to identify the pre-failure critical point. The decreasing patterns of MFCC1 and MFCC2 for ENF specimens can be clearly observed with the loading time by using the simple moving average method. Third, pencil lead breaks are repeatedly conducted on the healthy specimen to verify the pattern in the degraded specimen. Finally, a further investigation based on the cumulative moving average method demonstrates that MFCC1 and MFCC2 are quadratic and linear functions of the load ratio or the deflection ratio, respectively. In addition, the latter is more suitable to be an indicator of damage accumulation of composite laminates.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3