Synergistic effect of glass bead and glass fiber on the crystalline structure, thermal stability, and mechanical, rheological, and morphological properties of polyamide 6 composites

Author:

Kuram Emel1ORCID

Affiliation:

1. Department of Mechanical Engineering, Gebze Technical University, Kocaeli, Turkey

Abstract

The effect of filler amount and kind on the crystalline structure, thermal stability, and mechanical, rheological, and morphological properties of polyamide 6 (PA6) was studied in this research. Glass bead and glass fiber were chosen as mineral fillers. They were incorporated to PA6 solely or in mixed formulations at different proportions (hybrid composites). Tensile strain, tensile strength, impact strength, flexural strain, flexural strength, melt flow index, crystallite size, and thermal degradation parameters were determined for all composites. The addition of glass bead or glass fiber increased the brittleness of pure PA6. The incorporation of glass fiber to pure PA6 improved flexural, impact, and tensile strengths, and mixing of glass bead with pure PA6 polymer caused deterioration of both (tensile and flexural) strengths, but enhanced impact strength. Among hybrid composites, the highest flexural, tensile, and impact strength values were achieved with 15 wt% glass bead and 15 wt% glass fiber content. The addition of glass bead and/or glass fiber to PA6 polymer caused a decrement in melt flow index value. X-ray diffraction results indicated that pure PA6 polymer had α- and γ-crystalline forms, and the reinforcement of glass bead or glass fiber would induce the crystallization into γ-form. It was also found that the incorporation of glass bead or glass fiber influenced the lamellar thickness, and pure PA6 gave thicker lamellar crystal than that of glass bead/fiber-reinforced PA6 and its hybrid composites. Higher thermal stability with glass bead or glass fiber incorporation was found as compared to pure PA6 polymer.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3