Microstructural, Mechanical, and Tribological Performances of Composites Prepared via Melt Compounding of Polyamide 6, Basalt Fibers, and Styrene–Ethylene–Butylene–Styrene Copolymer

Author:

Zheng Qiaolie1,Wang Bin1,Li Xiping1,Xiao Xiangde2,Jin Huimei2,Zhang Hongwei2,Zhao Yuan1

Affiliation:

1. Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China

2. Jinhua Hefa Technology Co., Ltd., Jinhua 321004, China

Abstract

Basalt fibers (BFs) are environmentally friendly materials characterized by high strength and good wear resistance, and thus are popular candidates for reinforcing polymers. Herein, polyamide 6 (PA 6), BFs, and the styrene–ethylene–butylene–styrene (SEBS) copolymer were melt compounded sequentially to prepare fiber-reinforced PA 6-based composites. The results showed improved mechanical and tribological performances via the incorporation of BFs and SEBS into PA 6. Compared to neat PA 6, an average 83% increase in notched impact strength was achieved for the PA 6/SEBS/BF composites, which is mainly due to the good miscibility between SEBS and PA 6. The tensile strength of the composites, however, was only increased moderately, since the weak interfacial adhesion was not sufficiently efficient to transfer the load from the PA 6 matrix to the BFs. Interestingly, the wear rates of both the PA 6/SEBS blend and the PA 6/SEBS/BF composites were obviously lower than those of the neat PA 6. The PA 6/SEBS/BF composite with 10 wt.% of the BFs exhibited the lowest wear rate of 2.7 × 10−5 mm3/N·m, which was decreased by 95% compared to that of the neat PA 6. The facilitation of forming tribo-film with SEBS and the naturally good wear resistance of the BFs were responsible for the largely decreased wear rate. Moreover, the incorporation of SEBS and BFs into the PA 6 matrix transformed the wear mechanism from adhesive wear to abrasive wear.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province, China

Science & Technology Planning Project of Jinhua City

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3