Affiliation:
1. Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
2. Jinhua Hefa Technology Co., Ltd., Jinhua 321004, China
Abstract
Basalt fibers (BFs) are environmentally friendly materials characterized by high strength and good wear resistance, and thus are popular candidates for reinforcing polymers. Herein, polyamide 6 (PA 6), BFs, and the styrene–ethylene–butylene–styrene (SEBS) copolymer were melt compounded sequentially to prepare fiber-reinforced PA 6-based composites. The results showed improved mechanical and tribological performances via the incorporation of BFs and SEBS into PA 6. Compared to neat PA 6, an average 83% increase in notched impact strength was achieved for the PA 6/SEBS/BF composites, which is mainly due to the good miscibility between SEBS and PA 6. The tensile strength of the composites, however, was only increased moderately, since the weak interfacial adhesion was not sufficiently efficient to transfer the load from the PA 6 matrix to the BFs. Interestingly, the wear rates of both the PA 6/SEBS blend and the PA 6/SEBS/BF composites were obviously lower than those of the neat PA 6. The PA 6/SEBS/BF composite with 10 wt.% of the BFs exhibited the lowest wear rate of 2.7 × 10−5 mm3/N·m, which was decreased by 95% compared to that of the neat PA 6. The facilitation of forming tribo-film with SEBS and the naturally good wear resistance of the BFs were responsible for the largely decreased wear rate. Moreover, the incorporation of SEBS and BFs into the PA 6 matrix transformed the wear mechanism from adhesive wear to abrasive wear.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province, China
Science & Technology Planning Project of Jinhua City
Subject
General Materials Science
Reference37 articles.
1. Mechanical properties of hybrid fibers-reinforced polymer composite: A review. Polym;Gupta;Plast. Technol. Eng.,2016
2. Hybrid fiber reinforced polymer composites—A review;Sathishkumar;J. Reinf. Plast. Comp.,2014
3. Rajak, D.K., Pagar, D.D., Menezes, P.L., and Linul, E. (2019). Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers, 11.
4. Mechanical and thermal properties of long carbon fiber-reinforced polyamide 6 composites;An;Fiber. Polym.,2014
5. Effect of POSS and chain extender on tensile and fracture properties of neat and short glass fiber reinforced polyamide 6 composites;Yilmaz;Compos. A,2014
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献