Sustainable Nano‐Nonwoven Fabric Production from Recycled Polyamide 6 Waste via Electrospinning: Controlling Characteristics and Comprehensive Analytical Study

Author:

Metwally Bahaa S.1ORCID,Zayed Ahmed M.2,Rashed Samah A.3,El‐Sheikh Mohamed N.4,Hamouda Asmaa S.5

Affiliation:

1. Textile Technology Department Faculty of Technology and Education Beni‐Suef University Beni‐Suef 62511 Egypt

2. Applied Mineralogy and Water Research Lab Geology Department Faculty of Science Beni‐Suef University Beni Suef 62511 Egypt

3. Textile Printing Dyeing and Finishing Department Faculty of Applied Arts Beni‐Suef University Beni‐suet 62511 Egypt

4. Production Technology Department Faculty of Technology and Education Beni‐Suef University Beni‐Suef 62511 Egypt

5. Head of Environmental Sciences and Industrial Development Department Faculty of Postgraduate Studies for Advanced Sciences Beni‐Suef University Beni‐Suef 62511 Egypt

Abstract

AbstractThis study investigates the recycling of polyamide 6 (PA 6) wastes to produce nonwoven fabrics based on nanofibers (PA‐NWNF) to promote sustainable textile solid waste management and generate a novel material with exceptional properties. PA‐NWNF characteristics can be controlled by adjusting the electrospinning parameters. A comprehensive characterization will be performed using various analytical techniques, such as scanning electron microscopy (SEM), Fourier‐transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), Brunauer–Emmett–Teller (BET), and dynamic mechanical analysis (DMA), to evaluate the unique properties as a function of the electrospinning parameters. According to the SEM results, concentrations of 21% are suitable to produce nanofiber with a well‐defined morphology, provided that the applied voltage is maintained at 20 kV and the collecting distance is above 10 cm, irrespective of the flow rate in the established protocol. XRD and FTIR analysis indicate a gradual decrease in the α‐phase and a simultaneous increase in the γ‐phase as the solution concentration increases. Moreover, low applied voltage favored β‐form crystallization over γ and α‐forms predominant at the higher voltage. DMA and BET data reveal that the elongated droplets formed at lower concentration exhibit a low storage modulus, high damping factor, highest surface area, and smallest pore diameters.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3