Modelling of concentration-dependent moisture diffusion in hybrid fibre-reinforced polymer composites

Author:

Huo Z1,Bheemreddy V1,Chandrashekhara K1,Brack RA2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, USA

2. Bell Helicopter Textron, Inc., Fort Worth, TX, USA

Abstract

Hybrid fibre-reinforced polymer composites have extensive applications due to their high strength, cost effectiveness, improved product performance, low maintenance and design flexibility. However, moisture absorbed by composite components plays a detrimental role in both the integrity and durability of hybrid structure because it can degrade the mechanical properties and induce interfacial delamination failures. In this study, the moisture diffusion characteristics in two-phase hybrid composites using moisture concentration-dependent diffusion method have been investigated. The two phases are unidirectional S-glass fibre-reinforced epoxy matrix and unidirectional graphite fibre-reinforced epoxy matrix. In the moisture concentration-dependent diffusion method, the diffusion coefficients are not only dependent on the environmental temperature but also dependent on the nodal moisture concentration due to the internal swelling stress built during the diffusion process. A user-defined subroutine was developed to implement this method into commercial finite element code. Three-dimensional finite element models were developed to investigate the moisture diffusion in hybrid composites. A normalization approach was also integrated in the model to remove the moisture concentration discontinuity at the interface of different material components. The moisture diffusion in the three-layer hybrid composite exposed to 45℃/84% relative humidity for 70 days was simulated and validated by comparing the simulation results with experimental findings. The developed model was extended to simulate the moisture diffusion behaviour in an adhesive-bonded four-layer thick hybrid composite exposed to 45℃/84% relative humidity for 1.5 years. The results indicated that thin adhesive layers (0.12-mm thick) did not significantly affect the overall moisture uptake as compared with thick adhesive layers (0.76-mm thick).

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3