Weibull Probabilistic Model of Moisture Concentration Build Up in a Fiber Graphite/Epoxy Polymer Composite under Varying Hydrothermal Conditions

Author:

Belhadj Boucham,Abdelkader Lousdad,Chateauneuf Alaa

Abstract

Advanced mechanical and structural applications require accurate assessment and better knowledge of the damage state during elaboration and service. The development of life prediction methodologies for Glass Fiber Reinforced Polymers (GFRPs) has increased with the use of composites in different industries. It is important to develop through thickness degradation analyses due to ageing in order to predict its effect on the lifetime of composite structures. This study aims to model the moisture absorption, the concentration of the absorbed fluid and the reduction of mechanical properties in the through the thickness direction of a GFRPs structure. The water absorption behavior of woven glass fiber reinforced cyanate ester composites used in the plenum of the air conditioning pack of aircraft environmental control system has been modeled. The combined models describe the diffusion procedure primarily at material level and continuously at structure level. The amount of the absorbed moisture can be crucial for the mechanical behavior of the structure. Therefore, there is a need for a better understanding of the evolution of mechanical properties during ageing. The procedure utilizes the results of the diffusion model to calculate the moduli degradation during the water uptake process. Predictive models have been proposed by considering different sections throughout the thickness and provide a solid background for modeling the long term behavior of a structure exposed at different temperature and different time period. This work performed the numerical studies on the effect of moisture, temperature and presents some useful instructions for the evaluation of such composite structures.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3