Collaborative data-driven reliability analysis of multi-state fault trees

Author:

Niloofar Parisa1ORCID,Lazarova-Molnar Sanja1ORCID

Affiliation:

1. Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Odense, Denmark

Abstract

Fault tree modeling and failure analysis of systems that are equipped with sensors and meters are becoming more automated and less human-dependent. For a single system to benefit from its own collected data, it will need to wait for a long time to collect sufficient data to build representative models to increase its reliability. Therefore, if multiple systems with similar functionalities cooperate, the resolution of the collected data will increase. This leads to extracting fault trees with higher accuracy in failure detection and prediction. In this paper, we present an extended approach for collaborative Data-Driven Fault Tree Analysis (DDFTA) of a system which extracts repairable fault trees from time series data streaming from multiple systems/machines sharing similar functionalities. Results are analyzed to estimate the system’s reliability measures and investigate the effect of number of machines cooperating in data collection. Our method is not limited to binary (two states) components, nor to exponential distributions. Results show that applying collaborative data analytics significantly increases the accuracy of data-driven fault tree analysis, specifically for systems following nonexponential distributions.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3