Data-driven modelling: some past experiences and new approaches

Author:

Solomatine Dimitri P.1,Ostfeld Avi2

Affiliation:

1. UNESCO-IHE Institute for Water Education, PO Box 3015, 2601 DA, Delft, The Netherlands

2. Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel

Abstract

Physically based (process) models based on mathematical descriptions of water motion are widely used in river basin management. During the last decade the so-called data-driven models are becoming more and more common. These models rely upon the methods of computational intelligence and machine learning, and thus assume the presence of a considerable amount of data describing the modelled system's physics (i.e. hydraulic and/or hydrologic phenomena). This paper is a preface to the special issue on Data Driven Modelling and Evolutionary Optimization for River Basin Management, and presents a brief overview of the most popular techniques and some of the experiences of the authors in data-driven modelling relevant to river basin management. It also identifies the current trends and common pitfalls, provides some examples of successful applications and mentions the research challenges.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3