Energy consumption optimization for sustainable flexible robotic cells: Proposing exact and metaheuristic methods

Author:

Ghadiri Nejad Mazyar1,Vatankhah Barenji Reza2ORCID,Güleryüz Güldal3,Shavarani Seyed Mahdi45

Affiliation:

1. Department of Industrial Engineering, Cyprus International University, Nicosia, Turkey

2. Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK

3. Department of Industrial Engineering, Hacettepe University, Ankara, Turkey

4. Alliance Manchester Business School, University of Manchester, Manchester, UK

5. Seyed Mahdi Shavarani, Kent Business School, University of Kent, Kent, UK

Abstract

Many manufacturing companies are always looking for a way to reduce energy consumption by utilizing energy-efficient production methods. These methods can be different depending on the type of products and production technology. For instance, one of the ways to increase energy efficiency and keep the precision of production is to use robots for the transportation of the parts among the machines and loading/unloading the machines. This technology is affordable compared to the technologies used in manufacturing companies. Manufacturing companies that rely on robotics technology must have a strategy to reduce energy costs and at the same time increase production by adjusting the intensity of processing or controlling the production rate. This study presents an exact solution method for flexible robotic cells to control the production rate and minimize energy consumption, which aims to both reduce electricity prices and minimize greenhouse gas (GHG) emissions under a lead time of production. Then, considering the NP-hardens nature of the problem, a heuristic solution method based on the genetic algorithm (GA) is proposed. Using the proposed approach, manufacturing companies will be able to make more accurate decisions about processing intensity and process scheduling while ensuring sustainability.

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3