Bi-Objective Re-Entrant Hybrid Flow Shop Scheduling considering Energy Consumption Cost under Time-of-Use Electricity Tariffs

Author:

Geng Kaifeng12ORCID,Ye Chunming1ORCID,Dai Zhen hua1ORCID,Liu Li2ORCID

Affiliation:

1. School of Business, University of Shanghai for Science and Technology, Shanghai 200093, China

2. Information Construction and Management Center, Nanyang Institute of Technology, Nanyang, Henan 473004, China

Abstract

Re-entrant hybrid flow shop scheduling problem (RHFSP) is widely used in industries. However, little attention is paid to energy consumption cost with the raise of green manufacturing concept. This paper proposes an improved multiobjective ant lion optimization (IMOALO) algorithm to solve the RHFSP with the objectives of minimizing the makespan and energy consumption cost under Time-of-Use (TOU) electricity tariffs. A right-shift operation is then used to adjust the starting time of operations by avoiding the period of high electricity price to reduce the energy consumption cost as far as possible. The experimental results show that IMOALO algorithm is superior to multiobjective ant lion optimization (MOALO) algorithm, NSGA-II, and MOPSO in terms of the convergence, dominance, and diversity of nondominated solutions. The proposed model can make enterprises avoid high price period reasonably, transfer power load, and reduce the energy consumption cost effectively. Meanwhile, parameter analysis indicates that the period of TOU electricity tariffs and energy efficiency of machines have great impact on the scheduling results.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3