Experimental study on the surface roughness of micromilled Elgiloy™

Author:

Zhang P12,Wang B1,Liang Y1,Jackson M J2

Affiliation:

1. Center for Precision Engineering, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China

2. Center for Advanced Manufacturing, MET, Purdue University, West Lafayette, USA

Abstract

Elgiloy™ is a cobalt-based alloy with excellent physical and chemical performance, and is used widely in medical and industrial applications. The machining accuracy, surface topography, and surface damaged layer play an important role in the use of the alloy for specific applications. In this paper, an experimental study on the surface roughness of precision micromilling of Elgiloy is accomplished by using a super-fine-grained tungsten carbide milling cutter. The surface topography of the surface of the slots milled is achieved with different values of feed speed and axial depth of cut. Three-dimensional (3D) measurement results are considered to reflect the surface topography based on a comparison of the difference between two-dimensional (2D) and 3D surface roughness measurements. The arithmetic mean deviation of the slots’ 3D surface is achieved by using a white light interferometric profilometer. By using analysis of variance (ANOVA), the factors of feed speed, axial depth of cut, and their interaction are proven to be the most important factors relating to the magnitude of surface roughness.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3