Affiliation:
1. Product Design and Engineering Department, Middlesex University, London, UK
2. Advanced Manufacturing and Enterprise Engineering Department, Brunel University, Uxbridge, UK
Abstract
Insufficient experimental data from various micro tools limit industrial application of the micromilling process. This paper presents an experimental comparative investigation into micromilling of oxygen-free, high-conductivity copper using tungsten carbide (WC), chemistry vapour deposition (CVD) diamond, and single-crystal diamond micromilling tools at a uniform 0.4 mm diameter. The experiments were carried out on an ultra-precision micromilling machine that features high dynamic accurate performance, so that the dynamic effect of the machine tool itself on the cutting process can be reduced to a minimum. Micromachined surface roughness and burr height were characterized using white light interferometry, a scanning electron microscope (SEM), and a precision surface profiler. The influence of variation of cutting parameters, including cutting speeds, feedrate, and axial depth of cut, on surface roughness and burr formation were analysed. The experimental results show that there exists an optimum feedrate at which best surface roughness can be achieved. Optical quality surface roughness can be achieved with CVD and natural diamond tools by carefully selecting machining conditions, and surface roughness, Ra, of the order of 10 nm can also be obtained when using micromilling using WC tools on the precision micromilling machine.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献