Micromachining of coarse-grained multi-phase material

Author:

Mian A J1,Driver N1,Mativenga P T1

Affiliation:

1. School of MACE, The University of Manchester, Manchester, UK

Abstract

The high demand of miniaturized components, coupled with geometric and material range limitations of traditional lithographic techniques has generated a strong interest in micromechanical machining. In micromachining the so-called size effect is a dominant factor. This is attributed to the fact that the unit or physical size of the material to be removed can be of the same order of magnitude as the tool edge radius or grain size. This paper explores the micro-machinability of multi-phase ferrite—pearlite steel that has a relatively large average grain size (10 μm). The investigation and cutting tests examined the effect of undeformed chip thickness, tool edge radius, and workpiece grain size on the specific cutting force, burr size, surface finish, and tool wear. The work clearly shows that micro tool edge radius and workpiece material grain size are valuable inputs in determining micromilling conditions that ensure the best surface finish and reduced burr size. Cutting conditions recommendations are also put forwards for roughing and finishing passes in micromilling of AISI 1045 tool steel.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3