Affiliation:
1. School of MACE, The University of Manchester, Manchester, UK
Abstract
The high demand of miniaturized components, coupled with geometric and material range limitations of traditional lithographic techniques has generated a strong interest in micromechanical machining. In micromachining the so-called size effect is a dominant factor. This is attributed to the fact that the unit or physical size of the material to be removed can be of the same order of magnitude as the tool edge radius or grain size. This paper explores the micro-machinability of multi-phase ferrite—pearlite steel that has a relatively large average grain size (10 μm). The investigation and cutting tests examined the effect of undeformed chip thickness, tool edge radius, and workpiece grain size on the specific cutting force, burr size, surface finish, and tool wear. The work clearly shows that micro tool edge radius and workpiece material grain size are valuable inputs in determining micromilling conditions that ensure the best surface finish and reduced burr size. Cutting conditions recommendations are also put forwards for roughing and finishing passes in micromilling of AISI 1045 tool steel.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献