A roll-bending approach to suppress the edge cracking of silicon steel in the cold rolling process

Author:

Byon Sang Min1,Roh Yong-Hoon2,Yang Zhaorui3,Lee Youngseog2ORCID

Affiliation:

1. Department of Mechanical Engineering, Dong-A University, Busan, Korea

2. Department of Mechanical Engineering, Chung-Ang University, Seoul, Korea

3. School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China

Abstract

The range of roll-bending that inhibits the edge cracking of high-silicon (3.0 wt%) steel strip during cold rolling was investigated by performing a pilot cold rolling test. In the rolling test, roll-bending was emulated by lathe-machining the work roll surface to be concave (corresponding to negative roll-bending) or convex (corresponding to positive roll-bending). Crack growth length that propagated during rolling and crack growth direction were measured. Three-dimensional finite element analysis coupled with ductile fracture criterion was conducted to predict the crack growth length and crack growth direction. The reliability of the finite element analysis was verified by comparing the predictions with measurements. A series of finite element simulations were then conducted with different levels of roll-bending, expressed as the ratio of the radius of curvature of work roll surface ( R) to its barrel length ( L).The difference between the measurements and the predictions of the crack growth length and crack growth direction was 6.5% and 8.3%, respectively, when the initial notch length was 6 mm. Even if a high reduction ratio for a given pass was applied to the silicon steel strip, edge cracking did not occur if the L/ R ratio was less than −0.15, with a negative value corresponding to a concave surface profile, representing negative bending.

Funder

Dong-A University

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3