Affiliation:
1. Department of Mechanical Engineering, Chung-Ang University, Seoul, Korea
Abstract
Three-dimensional finite element simulation has been carried out to understand better the crack initiation and growth at the edge side of silicon steel sheet during cold rolling, which is attributable to elastic deformation of work roll, i.e., roll bending. Strain-controlled failure model was coupled with finite element method and a series of FE simulation has been carried out while three different roll bending modes are considered. FE simulation shows that the negative roll bending mode during rolling affects significantly the crack initiation behavior. When the strain for failure was reduced by 20%, number of elements removed was increased by about 305%. If an initial crack with 2.5mm in length was assumed on the strip, the initial edge crack propagated toward inner region of strip and the propagated length is about 10times of the initial edge crack length.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献