The effect of active surface morphology of grinding wheel with zone-diversified structure on the form of chips in traverse internal cylindrical grinding of 100Cr6 steel

Author:

Nadolny Krzysztof1,Kapłonek Wojciech1,Królczyk Grzegorz2,Ungureanu Nicolae3

Affiliation:

1. Department of Production Engineering, Faculty of Mechanical Engineering, Koszalin University of Technology, Koszalin, Poland

2. Faculty of Mechanical Engineering, Opole University of Technology, Opole, Poland

3. Department of Engineering and Technological Management, Technical University of Cluj-Napoca, North University Center of Baia Mare, Baia Mare, Romania

Abstract

The article presents the results of experimental investigations to determine the effect of active surface morphology of grinding wheels with a zone-diversified structure on the form and size of chips generated during traverse internal cylindrical grinding of 100Cr6 steel. In the grinding process involving grinding wheels with a zone-diversified structure, chip formation phenomena differ in the rough and finish grinding zones of the tool. In order to expand one’s knowledge of this phenomena, the microtopography measurements of the grinding wheel active surface in the rough and finish grinding zones were made, as well as scanning electron microscopic observations of these areas after the dressing cut and following internal cylindrical traverse grinding. The conducted studies showed that chips in the rough grinding zone of the grinding wheel active surface are usually several hundred micrometers in length. In the finish grinding zone, however, mainly micro-chips were generated whose length does not exceed 100 µm (usually around 10 µm in length). In the rough grinding zone, shearing-type and flowing-type chips dominate with a few examples of spherical melted chips. Moreover, in the finish grinding zone, mainly slice-type and knife-type micro-chips were observed.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3