The Role of Observation–Measurement Methods in the Surface Characterization of X39Cr13 Stainless-Steel Cutting Blades Used in the Fish Processing Industry

Author:

Kapłonek WojciechORCID,Nadolny KrzysztofORCID,Zieliński Bartosz,Plichta JarosławORCID,Pimenov DanilORCID,Sharma ShubhamORCID

Abstract

In the modern fish processing industry, flat fishes play an important role. They are processed into a final product in the form of a fillet during the skinning operation, which is carried out on machines operating in automated production lines. These machines are usually equipped with a single planar cutting blade or a few of such blades. The high-efficiency skinning and industrial conditions cause rapid wear of the cutting edge of the blade, which is detrimental to the quality of the final product. One of the forms of renewing the cutting ability of these types of tools is the regeneration carried out with the use of precise traverse surface grinding. The results of this process must be carefully verified for determining its correctness and possible optimization of its parameters. The main goal of this article was to characterize the usefulness of a number of observational and measuring methods to evaluate the results of the technical blade regeneration process. In this work, a number of contemporary observation–measurement methods such as optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), optical profilometry (OP), and angle-resolved scattering (ARS), supported by image processing and analysis techniques, were analyzed. The authors focused on presenting the role of the abovementioned methods in the surface characterization of planar cutting blades made of X39Cr13 chromium martensitic stainless steel before and after the technological operation of flat-fish skinning. Additionally, the surface condition after the regeneration process carried out using the five-axis CNC (computerized numerical control) grinding machine was also assessed. Numerous results of surface observations, elemental composition microanalysis, high-accuracy surface microgeometry measurements, and quantitative and qualitative analysis confirming the possibility of using the proposed methods in the presented applications are presented.

Publisher

MDPI AG

Subject

General Materials Science

Reference37 articles.

1. Fish and their processing in Poland at the beginning of the XXI century;Kapusta;Eng. Sci. Technol.,2014

2. Flatfishes: Biology and Exploitation (Fish and Aquatic Resources Series 16);Gibson,2014

3. Seafish Responsible Sourcing Guide: Plaice 2013https://www.opalesurfcasting.net/IMG/pdf/SeafishResponsibleSourcingGuide_plaice_201305.pdf

4. Fish Processing: Sustainability and New Opportunities,2011

5. Fish processing Technology;Hall,2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3