Thermal error compensation on a computer numerical control machine tool considering thermal tilt angles and cutting tool length

Author:

Yang Jun1,Mei Xuesong1,Zhao Liang1,Ma Chi1,Shi Hu1,Feng Bin1

Affiliation:

1. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, China

Abstract

The present error compensation technology of computer numerical control machine tools ignores radial thermal tilt angle errors of the spindle, while the thermal-induced offset is closely related to the tilt angle and the handle length. To solve this problem, three models of spindle thermal errors are proposed for the thermal yaw, pitch angles and elongation, and error compensation is performed based on the thermal tilt angles and cutting tool length. A five-point method was applied to measure the spindle thermal drifts at different speeds by eddy current sensors, which could effectively analyse the changes in the position-pose of the errors. Fuzzy clustering and correlation analysis were applied to group and optimise the temperature variables and select the variables sensitive to thermal errors in order to depress the multicollinearity of the temperature variables and improve the stability of the model. Finally, the thermal offset compensation was conducted in three directions. The results indicate that back propagation has a better capability for nonlinear fitting, but its generalisation is far less than that of time series. While the structure of multiple linear regression analysis is simple, its prediction accuracy is not satisfied. Time series adequately reflects the dynamic behaviours of the thermal error, and the prediction accuracy can reach 94%, with excellent robustness under different cutting conditions. The thermal error compensation equation that includes thermal tilt angles and cutting tool length is suitable for actual conditions and can accurately describe the space-pose of the thermal deformation and improve the machining accuracy.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3