Development of a Digital Model for Predicting the Variation in Bearing Preload and Dynamic Characteristics of a Milling Spindle under Thermal Effects

Author:

Arief Tria Mariz12ORCID,Lin Wei-Zhu3,Royandi Muhamad Aditya4ORCID,Hung Jui-Pin2ORCID

Affiliation:

1. Mechanical Engineering Department, Politeknik Negeri Bandung, Bandung 40559, Indonesia

2. Graduate Institute of Precision Manufacturing, National Chin-Yi University of Technology, Taichung 411030, Taiwan

3. Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411030, Taiwan

4. Department of Manufacturing Design Engineering, Politeknik Manufaktur Bandung, Bandung 40135, Indonesia

Abstract

The spindle tool is an important module of the machine tool. Its dynamic characteristics directly affect the machining performance, but it could also be affected by thermal deformation and bearing preload. However, it is difficult to detect the change in the bearing preload through sensory instruments. Therefore, this study aimed to establish a digital thermal–mechanical model to investigate the thermal-induced effects on the spindle tool system. The technologies involved include the following: Run-in experiments of the milling spindle at different speeds, the establishment of the thermal–mechanical model, identification of the thermal parameters, and prediction of the thermal-induced preload of bearings in the spindle. The speed-dependent thermal parameters were identified from thermal analysis through comparisons with transient temperature history, which were further used to model the thermal effects on the bearing preload and dynamic compliance of the milling spindle under different operating speeds. Current results of thermal–mechanical analysis also indicate that the internal temperature of the bearing can reach 40 °C, and the thermal elongation of the spindle tool is about 27 µm. At the steady state temperature of 15,000 rpm, the bearing preload is reduced by 40%, which yields a decrease in the bearing rigidity by approximately 16%. This, in turn, increases the dynamic compliance of the spindle tool by 22%. Comparisons of the experimental measurements and modeling data show that the variation in bearing preload substantially affects the modal frequency and stiffness of the spindle. These findings demonstrated that the proposed digital spindle model accurately mirrors real spindle characteristics, offering a foundation for monitoring performance changes and refining design, especially in bearing configuration and cooling systems.

Funder

National Science and Technology Council, Taiwan, R.O.C.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3